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Introduction 

In this paper we want to show an example of a dynamical 

system with a behavior that can be described by the interaction 

of several resonances, and therefore it can be treated with the 

technique proposed by B. Chirikov’ of many resonances over- 

lapping. This procedure would then lead to a stochastic system, 

At the same time we hope to suggest a solution to a problem 

which has been found typical in particle accelerators and storage 

rings. We refer here to the phenomena of lengthening and widening 

of bunches, in one word of bunch growth. In fact it has been 

found that high intense bunches could be unstable against coherent 

oscillations and grow in size until some critical spreads are 

reached’, Analytical theories have been provided that can predict 

the instabilities and can be used to estimate initial growth times 

and thresholds; but they are linear and are not capable of predicting 

when the bunch growth will eventually stop, Experiments and computer 

simulations have shown that indeed this occurs in a manner which 

is referred to as overshoot, The first overshoot formula was 

derived from Dory’s computer simulation3 and the main results are 

shown in Fig. 1. The formula which is commonly used is 

Af - Ai 2 
- ‘th (1) 

which relates the initial spread Ai to the final spread Af 

by means of a threshold value Ath. Yet so far not much of an 

explanation was given to (1). Only recently F. Sacherer’ suggested 

that the observed bunch growth could be explained as the interaction 

of two modes of instability, We want to pursue this approach 
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Figure 1. Dory's overshoot effect 
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a little closer here. Our outline is the following. A bunch 

can be unstable against coherent longitudinal oscillations, 

according to its original spread, Several modes of instabilities 

could be enhanced at the same time, Each of them of course can 

be treated independently only at the onset of the instability. 

But as long as the bunch grows these modes become larger and 

larger and at a certain moment they begin to interact with each 

other. This is the breaking point of the conventional theory. 

But if each mode can be described as a nonlinear resonance in the 

longitudinal phase-plane the interaction of the unstable modes 

would lead to the overlapping of the corresponding resonances. 

When this happens the motion becomes stochastic, random, and the 

coherence should disappear and the bunch would become stable. 

Clearly this approach would lead to a relation between the initial 

and final bunch spreads, 

The Analysis 

1. Consider a bunched beam of charged particles circulating 

in a conventional storage ring. Let I(B,t) be the local current 

in the beam at the time t and at the azimuth 13 around the ring. 

Because of the periodicity we can decompose the current in Fourier 

harmonics and write 

I(e,tl = h In cosn(8 -mot + $I,) 

where w o is the angular revolution frequency. 

In the case all current-dependent effects are neglected, the 

motion of the particles which make up the beam is determined only 

by the external forces. For instance the beam is bunched because 

of the presence of accelerating cavities. The degree of bunching 

(2) 
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and the shape and size of the bunches depend on the amount of 

RF forces and on the initial conditions of the particles in the 

longitudinal phase space. We can reasonably assume that the RF 

forces and the initial conditions are matched to each other so 

that the beam has a stationary, equilibrium configurations, from 

which one can derive a current distribution as given by (2) where 

the parameters involved In, w. and @n are constant. In the following 

we can consider only a “symmetric” bunch distribution and, therefore, 

take c$~ = 0. We shall assume that there is only one bunch without 

this lacking of generality. By definition 

+TI 

I n =A I(e) cosn8 de. 
-II 

Denoting with I 
P 

the peak value of the current and with 0 the 
P 

rms bunch spread, we can take a gaussian distribution so that 

e2 

I(e) = Ipe z”p2 

which inserted in (3) gives, in the approximation 8 
P 

<CT, 

I El 122 

In = -J-.T e 
-z n 0 

P 
?E 

’ n2e2 
= IO e -z P 

(3) 

(4) 

(51 

One requires also a relation between the angular spread 0 
P 

and the relative energy spread A. It is not really clear to us 

which relation to use, because this would depend on the properties 

of the system under consideration, namely whether it is conservative 

(protons) or not (electrons). Also it depends on the assumption 

we make for the phenomena we want to investigate: is the instability 

fast enough compared to one phase (synchrotron)oscillation period? 
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Would filamentation occur with consequent bunch area dilution? 

Here for sake of simplicity we shall assume the process is 

Liouvillian, so that 

BpA = Swo/E 

where S is the invariant bunch area and E the beam energy. 

Therefore (5) and (6) combined give also a relation between the 

harmonic current and the bunch height. 

2. Let us now introduce a complex impedance distributed 

around the ring, This will create a new longitudinal force which 

is dependent on the beam current, The initial current distribution 

(2) may not be matched to this extra force and the bunch can 

undergo changes of shape and size. In this situation, the three 

major quantities appearing in (2) for each harmonic, In, w. and 

@ n, could be changing with time, The variation with time can be 

different for different modes (n). Some modes will be damped, 

which corresponds to decreasing In, whereas others will be excited. 

Also the angular frequency can be affected in different ways, with 

different shifts for different modes 

w n = w. + Awn. 

At the same time also the longitudinal electric field, induced 

by the beam, will change accordingly 

Es = - Z 
IZJ$p) 

n 27iR cos (no -nwnt+an) 

where 2nR is the machine circumference, and 

‘n = (Znleian 

(7) 

(8) 

is the complex impedance at the angular frequency naO. For simplicity 
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we have neglected the phase factors I$,, which eventually can 

be included with on, 

Because of the impedance a loop is established between the 

motion of the beam and the beam induced field. Because of the 

latter, the current distribution within the bunching changes; 

from (5) and (6), this in turn means that the bunch also contin. 

uously changes size. On the other hand, as a consequence of this 

also the electric field, as can be seen from (8), continuously 

changes. 

The amplitude time variation and the frequency shift Aon can 

be calculated at the onset with the "coasting bearnIl techniques, 

where one mode at a time is taken and assumed to be decoupled 

from the others. Tf one knows the complex impedance Zn for this 

mode it is then possible to calculate the complex shift, of which 

the real part determines In(t) and the imaginary part gives Awn 

in Eq. (7). For instance, from the coasting beam theory, it is 

well known that in the case of uniform energy distribution, the 

complex shift is 

l/2 

5wn(~complex) = 

k2 *i2 2 
0 L;z E -ie 

koIoZn/n 
2~ 

0 3 
where 

(9) 

(101 

is a machine parameter related to the momentum compaction factor. 

IO 
is the average beam current (n=O) and Ai is the initial (rms) 

energy spread, 

A beam with uniform energy distribution is always unstable 

no matter what its initial size. But for more realistic distribution 



-6- FN-316 
1500 

with tails, the expression for the complex frequency shift is 

more complicated than the one given by (9). In this case, though, 

the beam can be entirely stable against coherent oscillations if 

its initial spread Ai is large enough. There will be some modifi- 

cation, of course, of its initial shape toward one which matches 

to the external as well as beam induced fields; but the bunch 

area should be preserved during the change, Here we are interested 

in the case where the initial spread Ai is small enough so that 

the beam is unstable, at least several modes are. Then we can 

disregard the details of the initial bunch shape and make use 

of (9) for the frequency shift. Again the real part of (9) gives 

the growth rate of the harmonic amplitude In, and therefore of 

the beam width according to (5) and (6)) the imaginary part of (9) 

only enters our definition (7). 

3. Consider now a test particle and let us write down its 

equations of motion 

i = w(w) = wo+koW 

w= & ZIZn\In(t) cos(nO-nwnt+an)+ 
n 

+ external fields 

where w is the angular momentum canonically conjugated to 8. 

In absence of any force the particle would simply drift at 

the speed given by (lla) where w is a constant, The drift speed 

is the revolution frequency which is a function of the particle 

energy, or w. 

There are two kinds of forces, The external forces which keep 

the motion of all the particles, including our test particle, 

tight up together in one bunch, and a current dependent force 
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which is a consequence of the bunching, In the second of the 

equations ofmotion, (lib), we have shown explicitely the second 

kind of forces as one could have derived it from the discussion 

of the previous section and in particular from (7). 

By inspecting Eqs. (lla and b) we quickly see that, as long 

as the various modes have different frequency shifts AU,, the 

test particle is experiencing a field that can be decomposed 

in many resonances. Each resonance would correspond to one 

collective mode n and is caused by the beating between the revolu- 

tion frequency of the test particle w(w) and the collective 

frequency wn. Since there are different frequencies wn for dif- 

ferent modes n, there are several resonances located at different 

places in the longitudinal phase plane (fl,w). The situation is 

sketched in Fig, 2. There is a large island which corresponds to 

the external field “bucket” which itself is a resonance. The beam 

populates the inside of this bucket, But inside this bucket and 

within the bunch, there are other islands each of them corresponding 

to one collective mode n of the expansion at the r.h, side of 

(lib), Thus this is a typical example of interaction of several 

resonances in the same phase space. We can solve our problem, 

therefore, by making use of the techniques devised for this field. 

The approach is made of two steps: 

1. Each mode or resonance n is treated individually and 

independently of all others, This is correct at the onset of the 

growth or instability, when the islands in Fig. 2 are reasonably 

small and separated from each other, In this case we can inves- 

tigate the motion around a single resonance, and calculate the 

corresponding island size and location, The resonance width is 

the island width, 
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Figure 2. Distribution of Resonances in the (e,w)-Phase Plane 



-8- FN-316 
1500 

Introduce the rotating phase angle 

9, = no-nont+a 71 - nZ (121 

then the equation of motion around the n-th resonance is obtained 

by retaining only the n-th Fourier mode at the r.h. side of (lib). 

$n = n(wo-wu)+nkow (13a) 

w = &fi;lZnlIn(t) sin JI,. 

It is well known that these equations lead to an island in the 

(e-w), phase-plane located at 

w = % 

n % 

and having full width 

An= 8 J 
elZnlIn(t) 

n/k01 ' 

The location of the resonance is then given by the 

shift nw n and does not change, whereas the width 6,, depends on the 

harmonic current, and therefore an increase of In leads also to an 

increase of 6n, 

ii. Resonance Overlapping. At certain moments of the 

growth two neighboring islands will overlap. This could be a 

local phenomena involving only some region of the phase-plane. 

When this occurs resonances cannot be treated isolated any longer; 

they are now interacting with each other. From the instability 

point of view this means that now several collective modes are 

coupled to each other and because their amplitude is too large, 

they are no longer normal to each other, but the development 

(14) 

(15) 
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of one depends on (and influences the development of) the others. 

According to Boris Chirikov’ the condition of 

resonance overlapping is essential for the motion of a test particle 

to become “stochastic”. The randomness of the motion,we could 

infer then,could be also regarded as a condition to reduce by 

mixing the amount of coherence in the motion within the beam bunch, 

Simply put, we draw a plausible assumption that the bunch growth 

will stop when the motion of a test particle becomes to some degree 

stochastic, namely when neighboring resonances associated to 

neighboring modes overlap, From (15)) (5) and (6) it is then 

possible to estimate the final stability in the sense so specified, 

4. The separation between two adjacent resonances in proximity 

of the mode is obviously given by 

Aw n+l-A~n A’J’,.,-A~~-~ 
S n =-q-----q---* 

In case the first term is predominant compared to the second one 

at the r.h. side of (9), we have 

el w 
s - 0 0 

n 4alkolAiE 

where Xn is the imaginary part of Zn, namely the reactance. 

The Chirikov condition for resonance overlapping is 

6 - s n n’ 

(16) 

(17) 

Combining (15) and (16) in (17) gives for the final harmonic 

amplitude when overlapping occurs 
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(18) 

where 

Gn = 

n 

Let us introduce the final relative energy spread Af 

corresponding to Inf, then from (4) and (5) 

2 s2w 2 
-n 

2E2A02 
I = IO e f 

nf 

then from (18) and (20) we finally derive 

Ai e 

This is an overshoot formula in the sense it relates the 

initial bunch spread to the final one. It still depends on n, 

the harmonic number, because it was derived from the assumption 

of a local overlapping. It can be applied, of course, only when 

the initial spread Ai is less than some critical value (the thres- 

hold). 

Let us investigate (21) in more detail. Define 

(19) 

(201 

(21) 

x = 2E2A2 elo Gn 

n2S2w 2 ' 
A= 

0 
64r21kojn2S2 * 
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Then we can plot x 
f 

versus xi as shown in Figure 3. 

Figure 3. __.- Graphic view of the overshoot 

Both xi and xf, of course are positive quantities. Therefore for 

xi<A no overshoot is possible. This corresponds to the fact that 

the width of a resonance is limited by the maximum value the Fourier 

harmonic In can reach, This is IO as one can see from (20). For 

Xi>X 
C’ 

where x c is the solution of 

x 
C = 1/1os+, 

the final spread would be smaller than the initial one which 

corresponds to the stability of the bunch. In conclusion the 

overshoot applies only in the range 

A<xi<x 
C 



-12; FN-316 
1500 

where, if xi is not too large compared to A, 

xf(xi-A) 2 A 

which is similar to the one commonly used. 

5. In the case the impedance is made of a pure inductance 

(plus a resistance) and, therefore, increases linearly with the 

frequency, the G-factor, Eq. (19), is identically zero and over- 

lapping does not occur, In fact, in this case all the modes 

suffer the same amount of frequency shift, and the corresponding 

islands will be sitting on top of each other. It is well known 

that this case corresponds then to one single resonance with 

highly nonlinear driving term. 

As an alternative we want, though, to show another case 

where islands are produced sitting around different frequencies. 

This time we shall assume that the impedance is lumped 

in one spot of the ring, say at 0 = 0, then the longitudinal field 

induced by the beam harmonic (8) is now replaced by 

EZ = -6p(e) 1 
lz,l In(t) 

n R cos(na-nwnt+en) 

where 6p(e) is a periodic delta function with period ZIT, which 

can be decomposed in the following way 

Ap(e) = & +L C cosme 
71m 

which included in (22) gives 

(221 

Ez = - cc IZnlInW 
mn 27rR cos(me-nwnt+on). 
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The case we have analyzed before, eventually, would correspond 

to having singled out the term m = n from all the others. Here 

we could do the opposite and consider only one harmonic n, so that 

EZ = - 
lznlIn(t) 

ZTR m Z cos(me-nw,t+a,). 

which can be inserted at the r.h. side of Eq. (llb). And again 

we would have an example of a dynamical system composed of several 

interacting resonances. The approach of course remains the same. 

For the first step where a single resonance is treated, it is 

convenient to introduce the following rotating phase angle 

JI nm = ma-nwnt+a -E . n2 

Then the equations of motion for the single resonance are 

iJ,, = (m-n)wo-nAn+mkow 

B = 6 12,11n(t)sinQnm. 

The island is located at 

W 

nAw,+(n-m)wo 

nm = mk 
0 

and has a full width 

6 = J elznlIn(tI 
nm 8 mlkol 

(24) 

(25) 

(27) 

(28) 

In the approximation that 

AW,<<W, 
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and 
m-n>>1 

the separation between two resonances next to each other 

and generated by the same mode of instability is 

S n-Kj?J 

independent of the beam parameters: current and spreads. 

Let us consider the local overlapping of the resonances 

produced by the same mode n (m-n); then this is reached for 

I W02 

nf = 8enlZnl Ik r 
0 

which is obtained by combining (17) with (28) and (29). 

Also from (20) and (30) 

2s2w02 

-ll 27 
e f = W02 

Ben1 olZnllkol ’ 

Again define 

x = 2E2A2 

n6w2 2 
0 

and 

then 

8enIolZnllkol 
B=- 

0 

Xf = 1 
logB 

(29) 

(30) 

(31) 

which we plotted in Fig. 4 
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Figure 4. Graphic view of the overshoot 

When B<l the overshoot is not possible, at least locally. 

Eq. (31) gives the final beam size only in the case xf>xi as 

shown in Fig. 4. 

We realize that our presentation has been sketchy and 

sometimes inconsistent. But our main interest was to propose 

a new approach to explain bunch growth in particle accelerators 

and storage rings. We are confident that a closer look at the 

problem, as we have outlined here, but with more detail, can 

provide a reasonable explanation of the overshoot phenomena. 
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